Deep Generative Models

6. Latent variable models

Plan for today

e Latent Variable Models
e Learning deep generative models
e Stochastic optimization: Reparameterization trick
e |Inference Amortization

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Variational inference

» Suppose g(z) is any probability distribution over the hidden
variables
 Evidence lower bound (ELBO) holds for any g(z)

0gps) =) q(@)1og 2 20

=) 4@ logpe(x,2) ~) (@) 1ogq(2)

=) a(@)1ogpy(x,2) + H(g)
. Equality holds i g(z) = pg(z|x)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Variational inference(continued)

» Suppose g(z) is any probability distribution over the hidden
variables. A little bit of algebra reveals

D(q(2) Il pg(z|x)) = —z q(z) logpg(x,z) +logpg(x) —H(q) = 0

« Evidence lower boundZ(ELBO) holds for any q
logpe(®) =) q(2)logp(x,2) + H(q)

Z
« Equality holds if g(z) = pg(z|x) because D(q(z) I pg(z|x)) =0
e Confirms our intuition that we seek likely completions z given the
observed values (evidence) x

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

The Evidence Lower bound

What if the posterior pg(z|x) is intractable to compute?

e In a VAE, this corresponds to “inverting ” the neural networks
Hg, Xg defining pg(x|z) = N(x|ug(2),29(2))

e Suppose is qd,(z) a (tractable) probability distribution over the

hidden variables parameterized by ¢ (variational parameters)
 For example, a Gaussian with mean and covariance specified

by ¢
qp(2) = N(z|png, Zg)
- Variational inference: pick ¢ so that q,4(2) is as close as possible
to pg(z]x)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

The Evidence Lower bound

log pg (%) = ELBO + D (q4(2) Il pe(z]x))

- ~
-

log-likelihood estimate

— logpe(x)
--- ELBO

KLge(2),pel) TS

» The better g4 (z) can approximate the posterior py(z|x), the

smaller D (q¢(z) Il pg (z|x)) we can achieve, the closer ELBO will

be to log pg(x)
« We want to jointly optimize over 8 and ¢ to maximize the ELBO
over a dataset D

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

The Evidence Lower bound applied to the dataset

» Evidence lower bound (ELBO) holds for any q(2)

l0gpe () =) 49(2) logpe(x,2) + H (44(2)) =: L(x; 6,)
e« Maximum IiI<eZIihood learning (over the entire dataset)

£0:D)=) logpp() =) Lx;0,¢)
x(i)ED x(i)ED
 Therefore,
‘DY > (). i
m@axf(H,D) > Q’qggl’??iqu 2 L(xY;0,¢°)
xWep

e Note that we use different variational parameters gbi for every
data point x®

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning via stochastic variational inference(SVI)

- Optimize ¥ ., L(xV;6,¢") as a function of 8, ¢?, - ¢V
using (stochastic) gradient descent

L(xD;0,¢!) = 2 q4:(2) log pg (x9,z) + H (q¢i(Z))

YA
= Eq,@ [log pe(xW, z) — log q¢i(z)]

1. Initialize 9, ¢1,---, "
2. Randomly sample a data point x® from D
3. Optimize £(xW; 0, ¢!) as a function of ¢p:

I. Repeat ¢' = ¢! —nV i L(xD; 6, ")

2. Until convergence to ¢** ~ argmax £(x; 6, ¢')
4. Update @ in the gradient direction. qu to step 2

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning Deep Generative models

L(x:0,4) =) as(2)logpo(x,2) + H (a4(2))

YA
= Eq, 2 |logpe(x,2) —log q¢(2)]
* Note: dropped i superscript from ¢* for compactness
+ To evaluate the bound, sample z(, 22, ..., 7 from g4 (z) and
estimate

Eqs2[logpe(x, 2) —log qe(2)]

1
N Ezk: log pa(x,2%7) — log q4 (2"

« Key assumption: g4 (2) is tractable, i.e., easy to sample and
evaluate

- Want to compute VL(x; 0, ¢) and Vg L(x; 6, p)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning Deep Generative models

L(x:0,4) =) as(2)logpo(x,2) + H (a4(2))

YA
= Eq,(2)|l0g g (x, 2) —log q¢(2)]
 Want to compute V4 L(x;0,¢) and Vo L(x; 0, ¢)
« The gradient with respect to ¢ is more complicated because the
expectation depends on ¢
« We still want to estimate with a Monte Carlo average
 For now, a better but less general alternative that only works for
continuous z (and only some distributions)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Reparameterization

Want to compute a gradient with respect to ¢ of

Faylr @) = | ap@r(2)dz

where z is continuous
Suppose q4(z) = N(z|u, ol) is a Gaussian with parameters ¢ =
(u,0)
These are equivalent ways of sampling
« Sample z~N(u, ol)
» Sample e~N(0,I), z = p + o€ = gy (€). Here g4 is
deterministic

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Reparameterization

e Using this equivalence, we compute the expectation in two ways

Ezqp([T(@)] = f 49 (@)1 (2)dz = Ec_non |7 (94(©))]

= fN(e)r(u + o€)de

VoEqy0 (@] = VEe [r (94(€))| = Ec|Vgr (94(©))]
- Easy to estimate via Monte Carlo if and g, are differentiable
w.r.t. ¢ and e is easy to sample from (backpropagation)

- E, [V¢r (g¢(e))] ~ %Zk Vpr (g¢(e(k))) where
e ... eXI<N(0,I)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning Deep Generative models

L(x:0,4) =) as(2)logpo(x,2) + H (a4(2))

Z
= Eq,(2)|l0g g (x, 2) —log q¢(2)]

e QOur case is slightly more complicated because we have
Eq,(2) [r(z, ¢)] instead of Eqy(2) [r(z)]. Term inside the
expectation also depends on ¢

« Can still use reparameterization. Assume z = u + g€ = gy (€)

like before
e Then

Eayp(0lr@ @) = Ee [rg (94(©)) K2r¢ 99 ("))

e and use chain rule for the gradient

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning via stochastic variational inference(SVI)

- Optimize ¥ ., L(xV;6,¢") as a function of 8, ¢?, - ¢V
using (stochastic) gradient descent

L(xD;0,¢!) = 2 q4:(2) log pg (x9,z) + H (q¢i(Z))

YA
= Eq,@ [log pe(xW, z) — log q¢i(z)]

1. Initialize 9, ¢1,---, "
2. Randomly sample a data point x® from D
3. Optimize £(xW; 0, ¢!) as a function of ¢p:

I. Repeat ¢' = ¢! —nV i L(xD; 6, ")

2. Until convergence to ¢** ~ argmax £(x; 6, ¢')
4. Update @ in the gradient direction. qu to step 2

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Amortized Inference

Ty - M. g 4
max £(0;D) > 9,¢r£1,.a.13(¢N z L(xY;0,¢7)
x(Mep

« So far, we have used a set of variational parameters ¢! for each

data point x(). Does not scale to large datasets
« Amortization: Now we learn a single parametric function f; that
maps each x to a set of (good) variational parameters

» Like doing regression on x® +—s ¢+
- For example, if g4 (z|x(")) are Gaussians with different means
yi, we learn a single neural network f; mapping x@ to yi
« We approximate the posteriors q¢(z|x(i)) using this distribution

q (z1f(x®))

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

A variational approximation to the posterior

« Assume py(xW, z) is close to pyara(xWY, z). Suppose z captures
information such as the digit identity (label), style, etc.

e Suppose q(pi(z) is a (tractable) probability distribution over the
hidden variables z parameterized by ¢!

« For each x®, need to find a good ¢%* (via optimization,
expensive)

- Amortized inference: learn how to map x®® to a good set of

parameters ¢! via g (z|f)[(x(i))). f; learns how to solve the
optimization problem

« In the literature, g (z|f,1(x(i))) often denoted g4 (z|x)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Learning with amortized inference

- Optimize ¥, L(x¥; 6, ¢) as a function of 6, ¢ using
(stochastic) gradient descent

L(x:0,9) =) (20 logpe(x,2) + H (a(z1))

= Eq, (210108 P (x, 2) —log g4 (z]%)]
Initialize 0, ¢
Randomly sample a data point x® from D
Compute Vo L£(xW;6,¢) and V4 L(xD; 6, ¢)
Update 6, ¢ in the gradient direction

N N

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Amortized Variational Inference

e Inference network: a model that learns an inverse map from

observations to latent variables
e Using this, we can compute a set of global variational parameters

¢ valid for infrence at both training and test time
e The simplest inference models: diagonal Gaussian densities

4p(21%) = N (z|py (x), diag (5(x)))

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

VAE: Autoencoder perspective

L(x;6,$) = Eq (210|108 pg (x, 2) — log q¢(z|x)]
= Eq, (210|108 Po (%, 2) — log p(2) + log p(z) — log q4(z|x)]

= Eq, (10108 P (x|2)] — D (44 (z12) 1 p(2))
1. Take a data point x/, map it to sample 2~q¢(z|x’) (encoder)

» Sample from a Gaussian g4 (z|x") = N (z|u¢(x’), diag (aczp(x’))),
encoder ,(x")
2. Reconstruct X by sampling from pg(x|2)(decoder)
« Sample from a Gaussian with parameters decoder,(2)
« What does the training objective L(x; 6, ¢) do?
» First term encourages ¥ ~ x’ (x' likely under pg(x|2))
e Second term encourages z to have a distribution like the

prior p(z)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Summary of Latent Variable Models

« Combine simple models to get a more flexible one (e.g., mixture
of Gaussians)

« Directed model permits ancestral sampling (efficient generation):
z~p(z), x~pg(x|2)

« However, log-likelihood is generally intractable, hence learning is
difficult

« Joint learning of a model () and an amortized inference
component (¢) to achieve tractability via ELBO optimization

- Latent representations for any x can be inferred via g4 (z|x)

Deep Generative Models | mjgim@nims.re.kr | NIMS & AJOU University

Thanks

