Deep Generative Models

6. Latent variable models

• 국가수리과학연구소 산업수학혁신센터 김민중

Plan for today

- Latent Variable Models
 - Learning deep generative models
 - Stochastic optimization: Reparameterization trick
 - Inference Amortization

Variational inference

- Suppose q(z) is any probability distribution over the hidden variables
- Evidence lower bound (ELBO) holds for any q(z)

$$\log p_{\theta}(\mathbf{x}) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}$$
$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) - \sum_{\mathbf{z}} q(\mathbf{z}) \log q(\mathbf{z})$$
$$= \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + H(q)$$
Equality holds if $q(\mathbf{z}) = p_{\theta}(\mathbf{z}|\mathbf{x})$

Variational inference(continued)

• Suppose q(z) is any probability distribution over the hidden variables. A little bit of algebra reveals

$$D(q(\mathbf{z}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{x}, \mathbf{z}) + \log p_{\theta}(\mathbf{x}) - H(q) \ge 0$$

• Evidence lower bound (ELBO) holds for any q

$$\log p_{\theta}(\boldsymbol{x}) \geq \sum_{\boldsymbol{z}} q(\boldsymbol{z}) \log p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) + H(q)$$

- Equality holds if $q(\mathbf{z}) = p_{\theta}(\mathbf{z}|\mathbf{x})$ because $D(q(\mathbf{z}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})) = 0$
- Confirms our intuition that we seek likely completions z given the observed values (evidence) x

The Evidence Lower bound

- What if the posterior $p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$ is intractable to compute?
- In a VAE, this corresponds to "inverting" the neural networks $\mu_{\theta}, \Sigma_{\theta}$ defining $p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) = N(\boldsymbol{x}|\mu_{\theta}(\boldsymbol{z}), \Sigma_{\theta}(\boldsymbol{z}))$
- Suppose is $q_{\phi}(z)$ a (tractable) probability distribution over the hidden variables parameterized by ϕ (variational parameters)
 - For example, a Gaussian with mean and covariance specified by ϕ

$$q_{\phi}(\boldsymbol{z}) = N(\boldsymbol{z}|\boldsymbol{\mu}_{\phi},\boldsymbol{\Sigma}_{\phi})$$

• Variational inference: pick ϕ so that $q_{\phi}(z)$ is as close as possible to $p_{\theta}(z|x)$

The Evidence Lower bound

- The better $q_{\phi}(z)$ can approximate the posterior $p_{\theta}(z|x)$, the smaller $D\left(q_{\phi}(z) \parallel p_{\theta}(z|x)\right)$ we can achieve, the closer ELBO will be to $\log p_{\theta}(x)$
- We want to jointly optimize over θ and ϕ to maximize the ELBO over a dataset D

The Evidence Lower bound applied to the dataset

- Evidence lower bound (ELBO) holds for any $q_{\phi}(z)$ $\log p_{\theta}(x) \ge \sum_{z} q_{\phi}(z) \log p_{\theta}(x, z) + H\left(q_{\phi}(z)\right) =: \mathcal{L}(x; \theta, \phi)$
- Maximum likelihood learning (over the entire dataset)

$$\ell(\theta; D) = \sum_{\boldsymbol{x}^{(i)} \in D} \log p_{\theta}(\boldsymbol{x}) \ge \sum_{\boldsymbol{x}^{(i)} \in D} \mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^{i})$$

• Therefore,

$$\max_{\theta} \ell(\theta; D) \geq \max_{\theta, \phi^1, \dots \phi^N} \sum_{\boldsymbol{x}^{(i)} \in D} \mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^i)$$

• Note that we use different variational parameters ϕ^i for every data point $x^{(i)}$

Learning via stochastic variational inference(SVI)

• Optimize $\sum_{x^{(i)} \in D} \mathcal{L}(x^{(i)}; \theta, \phi^i)$ as a function of $\theta, \phi^1, \dots \phi^N$ using (stochastic) gradient descent

$$\mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^{i}) = \sum_{\boldsymbol{z}} q_{\phi^{i}}(\boldsymbol{z}) \log p_{\theta}(\boldsymbol{x}^{(i)}, \boldsymbol{z}) + H\left(q_{\phi^{i}}(\boldsymbol{z})\right)$$
$$= E_{q_{\phi^{i}}(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x}^{(i)}, \boldsymbol{z}) - \log q_{\phi^{i}}(\boldsymbol{z})\right]$$

- 1. Initialize $\theta, \phi^1, \cdots, \phi^N$
- 2. Randomly sample a data point $x^{(i)}$ from D
- 3. Optimize $\mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi^i)$ as a function of ϕ^i :
 - 1. Repeat $\phi^i = \phi^i \eta \nabla_{\phi^i} \mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi^i)$
 - 2. Until convergence to $\phi^{i,*} \approx \arg \max_{d} \mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi^i)$
- 4. Update θ in the gradient direction. Go to step 2

Learning Deep Generative models

$$\mathcal{L}(\boldsymbol{x};\theta,\phi) = \sum_{\boldsymbol{z}} q_{\phi}(\boldsymbol{z}) \log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) + H\left(q_{\phi}(\boldsymbol{z})\right)$$
$$= E_{q_{\phi}(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z})\right]$$

- Note: dropped *i* superscript from ϕ^i for compactness
- To evaluate the bound, sample $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \cdots, \mathbf{z}^{(K)}$ from $q_{\phi}(\mathbf{z})$ and estimate

$$E_{q_{\phi}(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x}, \boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z}) \right]$$

$$\approx \frac{1}{K} \sum_{k} \log p_{\theta}(\boldsymbol{x}, \boldsymbol{z}^{(k)}) - \log q_{\phi}(\boldsymbol{z}^{(k)})$$

- Key assumption: $q_{\phi}(\mathbf{z})$ is tractable, i.e., easy to sample and evaluate
- Want to compute $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$

Learning Deep Generative models

$$\mathcal{L}(\boldsymbol{x};\theta,\phi) = \sum_{\boldsymbol{z}} q_{\phi}(\boldsymbol{z}) \log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) + H\left(q_{\phi}(\boldsymbol{z})\right)$$
$$= E_{q_{\phi}(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z})\right]$$

- Want to compute $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$
- The gradient with respect to ϕ is more complicated because the expectation depends on ϕ
- We still want to estimate with a Monte Carlo average
- For now, a better but less general alternative that only works for continuous *z* (and only some distributions)

Reparameterization

• Want to compute a gradient with respect to ϕ of

$$E_{q_{\phi}(\mathbf{z})}[r(\mathbf{z})] = \int q_{\phi}(\mathbf{z})r(\mathbf{z})d\mathbf{z}$$

- where *z* is continuous
- Suppose $q_{\phi}(z) = N(z|\mu, \sigma I)$ is a Gaussian with parameters $\phi = (\mu, \sigma)$
- These are equivalent ways of sampling
 - Sample $z \sim N(\mu, \sigma I)$
 - Sample $\epsilon \sim N(0, I)$, $z = \mu + \sigma \epsilon = g_{\phi}(\epsilon)$. Here g_{ϕ} is deterministic

Reparameterization

• Using this equivalence, we compute the expectation in two ways

$$E_{\mathbf{z} \sim q_{\phi}(\mathbf{z})}[r(\mathbf{z})] = \int q_{\phi}(\mathbf{z})r(\mathbf{z})d\mathbf{z} = E_{\boldsymbol{\epsilon} \sim N(\mathbf{0}, \boldsymbol{I})}\left[r\left(g_{\phi}(\boldsymbol{\epsilon})\right)\right]$$

$$= \int N(\boldsymbol{\epsilon}) r(\boldsymbol{\mu} + \sigma \boldsymbol{\epsilon}) d\boldsymbol{\epsilon}$$

$$\nabla_{\phi} E_{q_{\phi}(\mathbf{z})}[r(\mathbf{z})] = \nabla_{\phi} E_{\epsilon} \left[r \left(g_{\phi}(\boldsymbol{\epsilon}) \right) \right] = E_{\epsilon} \left[\nabla_{\phi} r \left(g_{\phi}(\boldsymbol{\epsilon}) \right) \right]$$

• Easy to estimate via Monte Carlo if r and g_{ϕ} are differentiable w.r.t. ϕ and ϵ is easy to sample from (backpropagation)

•
$$E_{\epsilon} \left[\nabla_{\phi} r \left(g_{\phi}(\epsilon) \right) \right] \approx \frac{1}{K} \sum_{k} \nabla_{\phi} r \left(g_{\phi}(\epsilon^{(k)}) \right)$$
 where $\epsilon^{(1)}, \dots, \epsilon^{(K)} \sim N(0, I)$

Learning Deep Generative models

$$\mathcal{L}(\boldsymbol{x};\theta,\phi) = \sum_{\boldsymbol{z}} q_{\phi}(\boldsymbol{z}) \log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) + H\left(q_{\phi}(\boldsymbol{z})\right)$$
$$= E_{q_{\phi}(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z})\right]$$

- Our case is slightly more complicated because we have $E_{q_{\phi}(z)}[r(z,\phi)]$ instead of $E_{q_{\phi}(z)}[r(z)]$. Term inside the expectation also depends on ϕ
- Can still use reparameterization. Assume $z = \mu + \sigma \epsilon = g_{\phi}(\epsilon)$ like before
- Then

$$E_{q_{\phi}(\boldsymbol{z})}[r(\boldsymbol{z}, \phi)] = E_{\epsilon} \left[r_{\phi} \left(g_{\phi}(\boldsymbol{\epsilon}) \right) \right] \approx \frac{1}{K} \sum_{k} r_{\phi} \left(g_{\phi}(\boldsymbol{\epsilon}^{(k)}) \right)$$

• and use chain rule for the gradient

Learning via stochastic variational inference(SVI)

• Optimize $\sum_{x^{(i)} \in D} \mathcal{L}(x^{(i)}; \theta, \phi^i)$ as a function of $\theta, \phi^1, \dots \phi^N$ using (stochastic) gradient descent

$$\mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^{i}) = \sum_{\boldsymbol{z}} q_{\phi^{i}}(\boldsymbol{z}) \log p_{\theta}(\boldsymbol{x}^{(i)}, \boldsymbol{z}) + H\left(q_{\phi^{i}}(\boldsymbol{z})\right)$$
$$= E_{q_{\phi^{i}}(\boldsymbol{z})} \left[\log p_{\theta}(\boldsymbol{x}^{(i)}, \boldsymbol{z}) - \log q_{\phi^{i}}(\boldsymbol{z})\right]$$

- 1. Initialize $\theta, \phi^1, \cdots, \phi^N$
- 2. Randomly sample a data point $x^{(i)}$ from D
- 3. Optimize $\mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi^i)$ as a function of ϕ^i :
 - 1. Repeat $\phi^i = \phi^i \eta \nabla_{\phi^i} \mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi^i)$
 - 2. Until convergence to $\phi^{i,*} \approx \arg \max_{d} \mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi^i)$
- 4. Update θ in the gradient direction. Go to step 2

Amortized Inference

$$\max_{\theta} \ell(\theta; D) \geq \max_{\theta, \phi^1, \dots, \phi^N} \sum_{\boldsymbol{x}^{(i)} \in D} \mathcal{L}(\boldsymbol{x}^{(i)}; \theta, \phi^i)$$

- So far, we have used a set of variational parameters ϕ^i for each data point $x^{(i)}$. Does not scale to large datasets
- Amortization: Now we learn a single parametric function f_{λ} that maps each x to a set of (good) variational parameters
- Like doing regression on $\mathbf{x}^{(i)} \mapsto \phi^{i,*}$
 - For example, if $q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$ are Gaussians with different means $\boldsymbol{\mu}^{i}$, we learn a single neural network f_{λ} mapping $\mathbf{x}^{(i)}$ to $\boldsymbol{\mu}^{i}$
- We approximate the posteriors $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}^{(i)})$ using this distribution $q\left(\boldsymbol{z}|f_{\lambda}(\boldsymbol{x}^{(i)})\right)$

A variational approximation to the posterior

- Assume $p_{\theta}(\mathbf{x}^{(i)}, \mathbf{z})$ is close to $p_{data}(\mathbf{x}^{(i)}, \mathbf{z})$. Suppose \mathbf{z} captures information such as the digit identity (label), style, etc.
- Suppose $q_{\phi^i}(z)$ is a (tractable) probability distribution over the hidden variables z parameterized by ϕ^i
- For each $x^{(i)}$, need to find a good $\phi^{i,*}$ (via optimization, expensive)
- Amortized inference: learn how to map $x^{(i)}$ to a good set of parameters ϕ^i via $q(z|f_\lambda(x^{(i)}))$. f_λ learns how to solve the optimization problem
- In the literature, $q(\mathbf{z}|f_{\lambda}(\mathbf{x}^{(i)}))$ often denoted $q_{\phi}(\mathbf{z}|\mathbf{x})$

Learning with amortized inference

• Optimize $\sum_{x^{(i)} \in D} \mathcal{L}(x^{(i)}; \theta, \phi)$ as a function of θ, ϕ using (stochastic) gradient descent

$$\mathcal{L}(\boldsymbol{x};\theta,\phi) = \sum_{\boldsymbol{z}} q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) + H\left(q_{\phi}(\boldsymbol{z}|\boldsymbol{x})\right)$$
$$= E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x})\right]$$

- 1. Initialize θ , ϕ
- 2. Randomly sample a data point $x^{(i)}$ from D
- 3. Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}^{(i)}; \theta, \phi)$
- 4. Update θ, ϕ in the gradient direction

Amortized Variational Inference

- Inference network: a model that learns an inverse map from observations to latent variables
- Using this, we can compute a set of global variational parameters ϕ valid for infrence at both training and test time
- The simplest inference models: diagonal Gaussian densities

$$q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = N\left(\boldsymbol{z}|\boldsymbol{\mu}_{\phi}(\boldsymbol{x}), \operatorname{diag}\left(\boldsymbol{\sigma}_{\phi}^{2}(\boldsymbol{x})\right)\right)$$

VAE: Autoencoder perspective

$$\mathcal{L}(\boldsymbol{x};\theta,\phi) = E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \Big[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \Big]$$

= $E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \Big[\log p_{\theta}(\boldsymbol{x},\boldsymbol{z}) - \log p(\boldsymbol{z}) + \log p(\boldsymbol{z}) - \log q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \Big]$
= $E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \Big[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) \Big] - D \left(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z}) \right)$

- 1. Take a data point x', map it to sample $\hat{z} \sim q_{\phi}(z|x')$ (encoder)
- Sample from a Gaussian $q_{\phi}(z|x') = N(z|\mu_{\phi}(x'), \operatorname{diag}(\sigma_{\phi}^2(x')))$, encoder_{ϕ}(x')
- 2. Reconstruct \hat{x} by sampling from $p_{\theta}(x|\hat{z})$ (decoder)
- Sample from a Gaussian with parameters decoder $_{\theta}(\hat{z})$
- What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?
 - First term encourages $\hat{x} \approx x' (x' \text{ likely under } p_{\theta}(x|\hat{z}))$
 - Second term encourages \hat{z} to have a distribution like the prior p(z)

Summary of Latent Variable Models

- Combine simple models to get a more flexible one (e.g., mixture of Gaussians)
- Directed model permits ancestral sampling (efficient generation): $z \sim p(z), x \sim p_{\theta}(x|z)$
- However, log-likelihood is generally intractable, hence learning is difficult
- Joint learning of a model (θ) and an amortized inference component (ϕ) to achieve tractability via ELBO optimization
- Latent representations for any x can be inferred via $q_{\phi}(z|x)$

Thanks